每日速看!缓存空间优化实践

2023-04-17 16:22:43   来源:博客园

作者:京东科技 董健

导读

缓存Redis,是我们最常用的服务,其适用场景广泛,被大量应用到各业务场景中。也正因如此,缓存成为了重要的硬件成本来源,我们有必要从空间上做一些优化,降低成本的同时也会提高性能。


(资料图)

下面以我们的案例说明,将缓存空间减少70%的做法。

场景设定

1、我们需要将POJO存储到缓存中,该类定义如下

public class TestPOJO implements Serializable {    private String testStatus;    private String userPin;    private String investor;    private Date testQueryTime;    private Date createTime;    private String bizInfo;    private Date otherTime;    private BigDecimal userAmount;    private BigDecimal userRate;    private BigDecimal applyAmount;    private String type;    private String checkTime;    private String preTestStatus;        public Object[] toValueArray(){        Object[] array = {testStatus, userPin, investor, testQueryTime,                createTime, bizInfo, otherTime, userAmount,                userRate, applyAmount, type, checkTime, preTestStatus};        return array;    }        public CreditRecord fromValueArray(Object[] valueArray){                 //具体的数据类型会丢失,需要做处理    }}

2、用下面的实例作为测试数据

TestPOJO pojo = new TestPOJO();pojo.setApplyAmount(new BigDecimal("200.11"));pojo.setBizInfo("XX");pojo.setUserAmount(new BigDecimal("1000.00"));pojo.setTestStatus("SUCCESS");pojo.setCheckTime("2023-02-02");pojo.setInvestor("ABCD");pojo.setUserRate(new BigDecimal("0.002"));pojo.setTestQueryTime(new Date());pojo.setOtherTime(new Date());pojo.setPreTestStatus("PROCESSING");pojo.setUserPin("ABCDEFGHIJ");pojo.setType("Y");
常规做法
System.out.println(JSON.toJSONString(pojo).length());

使用JSON直接序列化、打印 length=284****,这种方式是最简单的方式,也是最常用的方式,具体数据如下:

{"applyAmount":200.11,"bizInfo":"XX","checkTime":"2023-02-02","investor":"ABCD","otherTime":"2023-04-10 17:45:17.717","preCheckStatus":"PROCESSING","testQueryTime":"2023-04-10 17:45:17.717","testStatus":"SUCCESS","type":"Y","userAmount":1000.00,"userPin":"ABCDEFGHIJ","userRate":0.002}

我们发现,以上包含了大量无用的数据,其中属性名是没有必要存储的。

改进1-去掉属性名
System.out.println(JSON.toJSONString(pojo.toValueArray()).length());

通过选择数组结构代替对象结构,去掉了属性名,打印 length=144,将数据大小降低了50%,具体数据如下:

["SUCCESS","ABCDEFGHIJ","ABCD","2023-04-10 17:45:17.717",null,"XX","2023-04-10 17:45:17.717",1000.00,0.002,200.11,"Y","2023-02-02","PROCESSING"]

我们发现,null是没有必要存储的,时间的格式被序列化为字符串,不合理的序列化结果,导致了数据的膨胀,所以我们应该选用更好的序列化工具。

改进2-使用更好的序列化工具
//我们仍然选取JSON格式,但使用了第三方序列化工具System.out.println(new ObjectMapper(new MessagePackFactory()).writeValueAsBytes(pojo.toValueArray()).length);

选取更好的序列化工具,实现字段的压缩和合理的数据格式,打印 length=92,空间比上一步又降低了40%。

这是一份二进制数据,需要以二进制操作Redis,将二进制转为字符串后,打印如下:

��SUCCESS�ABCDEFGHIJ�ABCD��j�6���XX��j�6����?`bM����@i��Q�Y�2023-02-02�PROCESSING

顺着这个思路再深挖,我们发现,可以通过手动选择数据类型,实现更极致的优化效果,选择使用更小的数据类型,会获得进一步的提升。

改进3-优化数据类型

在以上用例中,testStatus、preCheckStatus、investor这3个字段,实际上是枚举字符串类型,如果能够使用更简单数据类型(比如byte或者int等)替代string,还可以进一步节省空间。其中checkTime可以用Long类型替代字符串,会被序列化工具输出更少的字节。

public Object[] toValueArray(){    Object[] array = {toInt(testStatus), userPin, toInt(investor), testQueryTime,    createTime, bizInfo, otherTime, userAmount,    userRate, applyAmount, type, toLong(checkTime), toInt(preTestStatus)};    return array;}

在手动调整后,使用了更小的数据类型替代了String类型,打印 length=69

改进4-考虑ZIP压缩

除了以上的几点之外,还可以考虑使用ZIP压缩方式获取更小的体积,在内容较大或重复性较多的情况下,ZIP压缩的效果明显,如果存储的内容是TestPOJO的数组,可能适合使用ZIP压缩。

但ZIP压缩并不一定会减少体积,在小于30个字节的情况下,也许还会增加体积。在重复性内容较少的情况下,无法获得明显提升。并且存在CPU开销。

在经过以上优化之后,ZIP压缩不再是必选项,需要根据实际数据做测试才能分辨到ZIP的压缩效果。

最终落地

上面的几个改进步骤体现了优化的思路,但是反序列化的过程会导致类型的丢失,处理起来比较繁琐,所以我们还需要考虑反序列化的问题。

在缓存对象被预定义的情况下,我们完全可以手动处理每个字段,所以在实战中,推荐使用手动序列化达到上述目的,实现精细化的控制,达到最好的压缩效果和最小的性能开销。

可以参考以下msgpack的实现代码,以下为测试代码,请自行封装更好的Packer和UnPacker等工具:

        org.msgpack        msgpack-core        0.9.3
public byte[] toByteArray() throws Exception {        MessageBufferPacker packer = MessagePack.newDefaultBufferPacker();        toByteArray(packer);        packer.close();        return packer.toByteArray();    }    public void toByteArray(MessageBufferPacker packer) throws Exception {        if (testStatus == null) {            packer.packNil();        }else{            packer.packString(testStatus);        }        if (userPin == null) {            packer.packNil();        }else{            packer.packString(userPin);        }        if (investor == null) {            packer.packNil();        }else{            packer.packString(investor);        }        if (testQueryTime == null) {            packer.packNil();        }else{            packer.packLong(testQueryTime.getTime());        }        if (createTime == null) {            packer.packNil();        }else{            packer.packLong(createTime.getTime());        }        if (bizInfo == null) {            packer.packNil();        }else{            packer.packString(bizInfo);        }        if (otherTime == null) {            packer.packNil();        }else{            packer.packLong(otherTime.getTime());        }        if (userAmount == null) {            packer.packNil();        }else{            packer.packString(userAmount.toString());        }        if (userRate == null) {            packer.packNil();        }else{            packer.packString(userRate.toString());        }        if (applyAmount == null) {            packer.packNil();        }else{            packer.packString(applyAmount.toString());        }        if (type == null) {            packer.packNil();        }else{            packer.packString(type);        }        if (checkTime == null) {            packer.packNil();        }else{            packer.packString(checkTime);        }        if (preTestStatus == null) {            packer.packNil();        }else{            packer.packString(preTestStatus);        }    }    public void fromByteArray(byte[] byteArray) throws Exception {        MessageUnpacker unpacker = MessagePack.newDefaultUnpacker(byteArray);        fromByteArray(unpacker);        unpacker.close();    }    public void fromByteArray(MessageUnpacker unpacker) throws Exception {        if (!unpacker.tryUnpackNil()){            this.setTestStatus(unpacker.unpackString());        }        if (!unpacker.tryUnpackNil()){            this.setUserPin(unpacker.unpackString());        }        if (!unpacker.tryUnpackNil()){            this.setInvestor(unpacker.unpackString());        }        if (!unpacker.tryUnpackNil()){            this.setTestQueryTime(new Date(unpacker.unpackLong()));        }        if (!unpacker.tryUnpackNil()){            this.setCreateTime(new Date(unpacker.unpackLong()));        }        if (!unpacker.tryUnpackNil()){            this.setBizInfo(unpacker.unpackString());        }        if (!unpacker.tryUnpackNil()){            this.setOtherTime(new Date(unpacker.unpackLong()));        }        if (!unpacker.tryUnpackNil()){            this.setUserAmount(new BigDecimal(unpacker.unpackString()));        }        if (!unpacker.tryUnpackNil()){            this.setUserRate(new BigDecimal(unpacker.unpackString()));        }        if (!unpacker.tryUnpackNil()){            this.setApplyAmount(new BigDecimal(unpacker.unpackString()));        }        if (!unpacker.tryUnpackNil()){            this.setType(unpacker.unpackString());        }        if (!unpacker.tryUnpackNil()){            this.setCheckTime(unpacker.unpackString());        }        if (!unpacker.tryUnpackNil()){            this.setPreTestStatus(unpacker.unpackString());        }    }
场景延伸

假设,我们为2亿用户存储数据,每个用户包含40个字段,字段key的长度是6个字节,字段是分别管理的。

正常情况下,我们会想到hash结构,而hash结构存储了key的信息,会占用额外资源,字段key属于不必要数据,按照上述思路,可以使用list替代hash结构。

通过Redis官方工具测试,使用list结构需要144G的空间,而使用hash结构需要245G的空间(当50%以上的属性为空时,需要进行测试,是否仍然适用)

在以上案例中,我们采取了几个非常简单的措施,仅仅有几行简单的代码,可降低空间70%以上,在数据量较大以及性能要求较高的场景中,是非常值得推荐的。:

• 使用数组替代对象(如果大量字段为空,需配合序列化工具对null进行压缩)

• 使用更好的序列化工具

• 使用更小的数据类型

• 考虑使用ZIP压缩

• 使用list替代hash结构(如果大量字段为空,需要进行测试对比)

标签:

X 关闭

X 关闭